Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36980783

RESUMO

The globally accepted surgical strategy in glioblastomas is removing the enhancing tumor. However, the peritumoral region harbors infiltration areas responsible for future tumor recurrence. This study aimed to evaluate a predictive model that identifies areas of future recurrence using a voxel-based radiomics analysis of magnetic resonance imaging (MRI) data. This multi-institutional study included a retrospective analysis of patients diagnosed with glioblastoma who underwent surgery with complete resection of the enhancing tumor. Fifty-five patients met the selection criteria. The study sample was split into training (N = 40) and testing (N = 15) datasets. Follow-up MRI was used for ground truth definition, and postoperative structural multiparametric MRI was used to extract voxel-based radiomic features. Deformable coregistration was used to register the MRI sequences for each patient, followed by segmentation of the peritumoral region in the postoperative scan and the enhancing tumor in the follow-up scan. Peritumoral voxels overlapping with enhancing tumor voxels were labeled as recurrence, while non-overlapping voxels were labeled as nonrecurrence. Voxel-based radiomic features were extracted from the peritumoral region. Four machine learning-based classifiers were trained for recurrence prediction. A region-based evaluation approach was used for model evaluation. The Categorical Boosting (CatBoost) classifier obtained the best performance on the testing dataset with an average area under the curve (AUC) of 0.81 ± 0.09 and an accuracy of 0.84 ± 0.06, using region-based evaluation. There was a clear visual correspondence between predicted and actual recurrence regions. We have developed a method that accurately predicts the region of future tumor recurrence in MRI scans of glioblastoma patients. This could enable the adaptation of surgical and radiotherapy treatment to these areas to potentially prolong the survival of these patients.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35552141

RESUMO

Image translation with convolutional autoencoders has recently been used as an approach to multimodal change detection (CD) in bitemporal satellite images. A main challenge is the alignment of the code spaces by reducing the contribution of change pixels to the learning of the translation function. Many existing approaches train the networks by exploiting supervised information of the change areas, which, however, is not always available. We propose to extract relational pixel information captured by domain-specific affinity matrices at the input and use this to enforce alignment of the code spaces and reduce the impact of change pixels on the learning objective. A change prior is derived in an unsupervised fashion from pixel pair affinities that are comparable across domains. To achieve code space alignment, we enforce pixels with similar affinity relations in the input domains to be correlated also in code space. We demonstrate the utility of this procedure in combination with cycle consistency. The proposed approach is compared with the state-of-the-art machine learning and deep learning algorithms. Experiments conducted on four real and representative datasets show the effectiveness of our methodology.

3.
IEEE J Biomed Health Inform ; 26(4): 1794-1801, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34665748

RESUMO

Surgical site infections are hospital-acquired infections resulting in severe risk for patients and significantly increased costs for healthcare providers. In this work, we show how to leverage irregularly sampled preoperative blood tests to predict, on the day of surgery, a future surgical site infection and its severity. Our dataset is extracted from the electronic health records of patients who underwent gastrointestinal surgery and developed either deep, shallow or no infection. We represent the patients using the concentrations of fourteen common blood components collected over the four weeks preceding the surgery partitioned into six time windows. A gradient boosting based classifier trained on our new set of features reports an AUROC of 0.991 for predicting a postoperative infection and and AUROC of 0.937 for classifying the severity of the infection. Further analyses support the clinical relevance of our approach as the most important features describe the nutritional status and the liver function over the two weeks prior to surgery.


Assuntos
Registros Eletrônicos de Saúde , Infecção da Ferida Cirúrgica , Previsões , Humanos , Fatores de Risco , Infecção da Ferida Cirúrgica/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...